RADIATIVE—CONDUCTIVE HEAT TRANSFER IN A
MEDIUM WITH A CYLINDRICAL GEOMETRY. I

A. A. Men' UDC 536.3

Exact equations are formulated which describe the radiative—conductive heat transfer in a
cylindrical layer of any thickness and approximate solutions to them are then found.

In most studies of compound heat transfer, by both conduction and radiation through a material, one
considers a plane layer of semitransiucent material. Only in [1-3] consideration is given to radiative
—conductive heat transfer in a medium with 2 more intricate geometry, namely, a spherical layer in [1]
and a cylindrical layer in [2, 3]. In the case of semitranslucent solids the necessity of analyzing the radia-
tive—conductive heat transfer in a cylindrical layer is dictated by the fact that the thermophysical prop-
erties at high temperatures are often studied on cylindrical specimens. Compound heat transfer in a non-
selective medium has been analyzed in [2] on the basis of the Eddington approximation, considering the
mean-over-all-directions radiation intensity and representing the radiation flux in gradient form. Such a
model is very approximate and its use is justified only for optically very dense media, as we well know,
since in other cases it leads to large errors [4]. In [3] is considered an optically thin layer, for which the
original equations can also be greatly simplified. The expression for the radiation vector in [3] does not
make it possible, however, to separate the components associated with radiation from the boundary sur-
faces of the layer and the solution obtained there is applicable when the effect of radiation is small.

The study here will be concerned with steady radiative—conductive heat transfer in a cylindrical
layer of any thickness, and the solution will be based on the integral equations of a temperature field.
The article will appear in two parts, In PartI we formulate the fundamental equations, which appear much
more complicated than in the case of a plane layer so that even a computer-aided solution becomes rather
unwieldy. This solution will be shown in Part I, where the temperature fields will also be analyzed. In
many cases, however, results can be obtained by a somewhat simpler procedure on the basis of simplified
relations. This will be demonstrated here in evaluating the accuracy of the thus obtained values of the
spectral properties of a semitranslucent material.

Fundamental Equations. We consider a semitranslucent medium bounded by two coaxial cylindrical
surfaces with the respective radii r; and r, (ry < ry) and spectral mirror reflectivities Ry, and R,,. The
thermophysical and the optical properties of the material are assumed the same at all points in the layer.
Solving simultaneously the equation of radiative heat transfer and the equation of energy conservation for
the steady state without internal heat sources, we obtain the following nonlinear integral equation of the
temperature field (a step~-by-step derivation has been given in [5]):
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Here the spectral luminance of the boundary surfaces and the radiation coefficients are defined by the
equalities B,(v, Ti) = (1-Ry,)ndIg (v, Ti) and j,(p) = kyndIg[v, T(p)], respectively. In the derivation of this
equation we have assumed both the temperature T (ry) = T, and the total energy flux Q incident on the inner
boundary surface to be known; the resulting temperature difference AT = T~T, obtained in the course of
the solution will then be used for evaluating the effects of various factors.
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Evidently the integral equation (1) contains a substantial nonlinearity due to the complicated tempera-
ture-dependence of j, and B,. Considering that in practical applications of semitranslucent materials most
often # < Ty, it becomes possible to linearize Eq. (1). We note that a rigorous evaluation of the lineariza-
tion error is generally difficult, since no other methods of obtaining reliable estimates are available, ex-
cept a repeated solution of the nonlinear equation and of the linearized version for various initial param-
eter values with a subsequent comparison of the results. Such a comparative analysis for a plane layer [6]
has shown that, when 4#/T; <0.1, the linearization error does not exceed a few percent over a wide range of
parameter values. Without any further comments, we will now proceed to analyze expressly the linearized
equation.

Calculations analogous to those for a plane layer [7] yield
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For the so-called "gray" approximation, using the spectral properties of the material and of the boundary
surfaces averaged over the entire spectrum rather than over the optical range only, we obtain instead of

(5)

r 1 6n2cT:

‘ﬂ(r) = __Q_i_ In
A 141 A

3
e [Fy () + Fy (0] AT — 107791
nA

o=,
kjﬁ@&mmm (6)
P=ry

The applicability of the "gray" approximation to several semitranslucent materials has been demonstrated
in [8]. A more thorough comparative analysis of Egs. (5) and (6) will be made in the last section of this
article.

Approximate Relations. The complexity of the resulting integral equations has to do with the un~
wieldiness of the analytical expressions for their kernels, which is evident from formulas (4a) and (4b).
The first approximation to the solution is the free term in Eqgs. (5) and (6). In order to give this approxi-
mation a physical interpretation, we must note that the last of the terms discarded in (5) and (6) refer to
the intrinsic radiation of the medium (they represent the difference between the radiation of the medium at
a constant temperature T, and of the medium at its true temperature distribution T (r)), while the preceding
terms refer to the radiation of the boundary surfaces (with absorption and multiple reflections in the
layer). Evidently, the more translucent the medium is and the higher its emissivity is, the closer will
the free term be to the exact solution.

For an estimate of the first approximation, we again make a comparison with a plane layer.

An analog of Eq. (6) for a plane layer is the equation [7]
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and K(r, 7') is the kernel of the equation — a complicated function of Ry, Ry, and 7. Calculations have
shown that in many cases discarding the last term in (7) causes no large errors in the determination of
the temperature drop AT. Thus, for a plate 5 mm thick with @ = 7500 W/m?, T, = 1000°K, R = 0.5,

k =17.1 m™!, and A = 1.5 W/m - deg the exact value of AT is 15.98°C and the first approximation AT {t)

= 16.40°C. For a plate 18 mm thick (@ = 6500 W/m?, k = 10 m™!, T, = 1100°K, and R = 0), the respective



TABLE 1. Temperature Drops in a Plane Layer (Exact
solution of Eq. (7). AT, first approximation AT(”, QH/A
=100°C, n=1.46, g = & = g)

Ty, °K | e [ [ arcc | ar,°cC
500 0,062 0,66 99,5 98,3
700 0,076 0,15 98,0 97,0

1000 0,112 0,066 93,6 92,1
1300 0,148 0,043 85,0 83,2
1500 . 0,192 0,035 75,2 72,9

values are 9.82°C and 10.25°C. A series of calculations was made for a semitranslucent quartz plate 2.4
mm thick covered with platinum foil on both sides. The results shown in Table 1 indicate that for thin
layers the error in the value of AT based on this approximation does not exceed 2.5% when the emissivity
of the boundary surfaces is very low and the temperature is high, so that in this case it is quite unneces-
sary to use more complicated and unwieldy formulas such as those in [9, 10].

A comparison between the first approximation and the exact solution (which will be analyzed in Part
II) leads to the conclusion that the free term in Eqgs. (5) and (6) may be used for finding the temperature
drop AT across a layer, but should not be used for determining the radial temperature profile T(r). A
simplified relation for AT in the "gray" approximation, for instance, would be
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Temperature drops across a cylindrical layer (r; = 2 mm, ry = 20 mm) were calculated according to for-

mula (9) with various values of the reflectivity. The results are shown in Table 2, (It must be remem-

bered that, with the same original parameter values but with radiation disregarded, the value for AT was

T . 20°C.) Functions F, and F,, defined by expressions (2) and (3), respectively, were calculated on a model

BESM-4 computer in not more than 3 min, while a complete solution to the equations on the same computer
required 4 h machine time. '

On the basis of this latter simplified relation, we will now determine the relative effect of radiation
6p and 6, on the heat transfer in a plane and in a cylindrical layer, respectively. Denoting by AT, the
temperature drop across the layer without radiation taken into account, we find
_ AT,— AT 8n%T}
» AT T kA
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Calculations according to (10) and (11) were compared on the basis of the same optical thickness, i.e.,
with 74 = kH = k(r,—r;). Comparing, for instance, a cylindrical layer (r; = 2 mm, ry = 20 mm) with a plate
18 mm thick in the extreme case (gy = g5 =1 at Ty = 1100°K, k =10 m", n=1.5, and A = 1.5 W/m -deg),
we obtained 0p = 6.62 and ¢ = 2.90. Such a difference is explainable by the fact that, in our formulation of
the problem, the most intensely radiating surface (the "hot" wall) of a cylindrical layer has a smaller area
than any other cylindrical surface within the layer.

é
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Optical Selectivity Characteristics and the "Gray" Approximation. For a semitranslucent medium
with a cylindrical geometry, where the determination of the temperature field involves very unwieldy equa-
tions of radiative—-conductive heat transfer, any possible simplifying approximation of the spectral optical
properties and, particularly, a change from Eq. (5) to Eq. (6) is quite worthwhile. Inasmuch as we are
interested in qualitative results rather than in the temperature field specifically, it is permissible in this
analysis to consider only AT and to determine this quantity by the method shown here.

'TABLE 2. Temperature Drop AT = T,—T, in a Cylindrical
Layer with Various Reflectivities of the Boundary Surfaces
(T, = 1100°K, Q = 6500 W/m?, A =1.5 W/m.deg, n = 1.46)

R, 0 0,5 - 0,2 0,2
Rz Y 0,5 0,6 0,8
AT,*c 5,18 8,33 8,57 11,3



TABLE 3. Piecewise-Constant Approximation of the Absorption
Spectrum of KV Quartz Glass at Temperatures of 1100°K

Boundary interval | 025 | 25 | 267 | 281 | 320 | 458
of anCIengThS, H 2,5 [ 2,674 [ 2,874 | 3,289 4,587 ! 5,0
K, m-! ’ 5 I 29 I 120 } 44 255 1410

For a feasibility study of such a changeover to the "gray" approximation, it is worthwhile o use a
material whose absorption characteristics vary appreciably within the region of the spectrum adjoining the
peak of thermal radiation. Such a material is, for example, fused quartz at a temperature of 1100°K {i1].
The absorption in SiO, within the 0.25-2.5 u wavelength band is so weak that it can be measured only very
inaccurately. Within the 2.5-5.0 1 wavelength band k,, increases by 2-2.5 orders of magnitude, and beyond
those wavelengths it increases very rapidly almost to infinity. Taking into account such a complex trend
of the k(v) curve, the latter was replaced by a piecewise-constant approximation shown in Table 3 (all
measurements of the spectral absorption coefficient were made by Settarova [11]). On the basis of these
data we calculated AT. In the course of these calculations we have found that for the spectrum "window,"

e., for the 0.25-2.5 u band, it is advisable to use the limit values of functions F, and Fy:
. . . 41 €1
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For the case gy =gy =1 (ry = 2 mm, r; = 20 mm, Q = 6500 W/m?, A =1.5 W/m -deg, and n = 1.46), Eq. (5)
yielded AT, = 9.76°C

Before making a comparison with the "gray" approximation, it is necessary to find the mean spec-
tral absorption coefficient. As we well known [4], one uses either the Planck mean coefficient (kp) or the
Rosseland mean coefficient (kg). Calculations have shown that for a material like fused quartz both coef-~
ficients are rather indeterminate. This has to do with the fact that the integration over all wavelengths
from 0 to «, according to the definition of kp and kg, is in practice replaced by integration over a finite
range of the spectrum, the choice of which is quite arbitrary, with the high range of k,, values strongly
affecting kp and the low range of k,, values strongly affecting kr. I kp is calculated on the basis of the
2.5-4.587 i band, within which ky changes from 5 to 1410 m™, then we obtain kp = 125.5 m - Adding the
0.25-2.5p band (k, = 5 m™!) will change the calculated value of kp by less than 1%. Adding the 4.587-
10.0 u band with the underestimated value k, =1410 m™!, on the other hand, will increase the calculated
value of kp to 710 m “1. In the case of kg the tendency is just opposite: the 2.5-4.587 u band yields kg
=163.4 m™}, the 2.5-10.0 u band yields kg = 161.2 m™!, and the 0.25-4.587 y band yields kp = 10.1 m™1,
(In these calculations the k(v) curve has been approximated more accurately by straight and parabolic seg-
ments.) Having determined the temperature drop from (9) with kp = 125.5 m™, we find ATp =13.4°C.
The same formula with kg = 10.1 m™! yields ATR = 7.02°C. Evidently, neither of these two "gray" ap-~
proximations agree with AT, = 9.76°C according to formula (5).

Inasmuch as the inadequacy of the "gray" approximation is due primarily to the existence of the
"window" in the spectrum, we will instead transfoerm Eq. (6) in the following manner:
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assuming k;, = 0 within the translucency band (v, v,) of the material and calculating the mean absorption

coefficient k on the bas1s of the rest of the spectrum. Letting k =kp = 125.5 m™! yields ATp = 8,9°C, but
letting k = kg = 163.4 m™ ylelds ATR = 9.62°C, the latter being much closer to AT, than before.

Thus, even in an unfavorable situation it is possible by this artifice to improve the accuracy of the
"gray" approximation and to simplify the procedure for determining the temperature field. More accurate
results are obtained, furthermore, if the weak-absorption band is omitted and the mean coefficient is
based on the rest of the spectrum according to Rosseland.



NOTATION

A is the thermal conductivity;

k is the absorption coefficient;

n is the refractive index;

kp is the Planck mean absorption coefficient;

kg is the Rosseland mean absorption coefficient;

j is the radiation coefficient of the medium;

R is the reflectivity;

3 is the emissivity;

&, = E18y(gq + 82—8182)“1 is the referred emissivity;

v is the spectral frequency;

B, T) is the spectral luminance of the boundary surfaces;
Q - is the total energy flux;

Ig(v, T) is the spectral radiation intensity of an ideal black body;
o is the Stefan constant;

#() = T~T(r) is the relative temperature;

AT =T-T, is the temperature drop across a layer;

T is the optical thickness;

H is the thickness of a plane layer;

r and p are the cylindrical coordinates.

Subscripts

1and 2 denote the inner and the outer surface of a layer, respectively.
v denotes the spectral parameter.
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